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We investigate flows on graphs whose links have random capacities. For binary trees we derive the prob-
ability distribution for the maximal flow from the root to a leaf, and show that for infinite trees it vanishes
beyond a certain threshold that depends on the distribution of capacities. We then examine the maximal total
flux from the root to the leaves. Our methods generalize to simple graphs with loops, e.g., to hierarchical
lattices and to complete graphs.
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I. INTRODUCTION

Flows in networks are abundant: the flow of water in riv-
ers and pipelines, the flow of current in electrical wires, the
flow of passengers, and the flow of cars through the network
of roads �1� are just a few examples. These flows can be
characterized by the conservation of current—apart from
sources and sinks in the network, the current is locally
conserved.

The maximal flows in capacitated networks are especially
interesting �2�. A capacitated network is a graph with a non-
negative number called capacity c=c�e� assigned to each
edge e. Capacity measures the maximal flow that can pass
through the edge. For each vertex, the current flowing in and
out of it should be the same �Kirchoff’s conservation law�.
This rule is only modified for the source vertices where the
current enters the system, and the sink vertices through
which the current leaves the network. Practically it means,
that for two edges e1 ,e2 in series the combined capacity of
the path �e1 ,e2� is min�c1 ,c2�; for two edges in parallel the
combined capacity is c1+c2.

In this paper we mainly focus on rooted trees in which all
leaf nodes are at the same distance from the root; such trees
are often called perfect trees. We assume that the current
enters through the root of the tree and it is discharged at the
leaves �see Fig. 1�. Generally for a path �e1 , . . . ,en�, i.e., a set
of edges in series, the capacity of a path is the minimal
capacity along the path: min�c1 , . . . ,cn�. This defines the flow
between any two vertices in a tree.

There is huge engineering and mathematical literature on
flows in networks. One important goal is to find the maximal
flow �2–6�, although other issues have been also investigated
�9,7,8,10–15�. Most of the earlier work is done in a deter-
ministic setting. Flows on random networks and on disor-
dered lattices have been studied in a few papers, see, e.g.,
Refs. �16,17�. Here we concentrate on large networks where
the capacities are random variables chosen from the same
distribution. We shall mostly investigate trees since the ab-
sence of circuits greatly simplifies the analysis. In Sec. II, we
investigate flows on deterministic rooted trees, namely on
binary trees and then on b-ary trees. In Sec. III, we solve the
maximal flow problem on hierarchical lattices which gener-
alize rooted trees to include loops. We then analyze random
recursive trees in Sec. IV. A brief discussion is given in
Sec. V.

II. DETERMINISTIC ROOTED TREES

A rooted binary tree, also known as a Cayley tree of co-
ordination number 3, has a root vertex in generation g=0
which is joined to two vertices in generation g=1 each of
which is joined to two vertices in generation g=2, so that
there are a total of four vertices in generation 2; generally,
the binary tree has 2g vertices in generation g �Fig. 1�. Sup-
pose that current can flow only in one direction, namely,
from generation g to g+1. A capacity c=c�e��0 is assigned
randomly to each edge e. We shall assume that capacities
are independently chosen from a distribution with density
f�s�=−F��s�, where

F�s� = Prob�c � s� . �1�

For the binary tree with g generations, there are 2g leaves
�vertices in the last generation g�. The capacity
min�c1 , . . . ,cg� of each path from the root to the leaf is a
random variable whose distribution is given by

Prob�min�c1, . . . ,cg� � s� = �
k=1

g

Prob�ck � s� = �F�s��g.

What is the probability distribution of the maximal flow
among these 2g flows? What is the distribution of the total
flux from the root to the leaves? These are the questions
discussed below.

FIG. 1. �Color online� Illustration of a flow on a binary tree of
three generations. The width of the links represents their capacity,
for instance, c1�c2. The current flows from top to bottom. The
arrows represents the amount of current flowing in and out of the
system.
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A. Maximal flow

Let Mg=max�s1 , . . . ,s2g� be the maximal flow out of the
2g flows to all leaves. Let

Pg�s� = Prob�Mg � s� �2�

be the cumulative distribution. Each path goes through one
of the two edges issuing from the root �we denote their ca-
pacities by c1 and c2, as illustrated in Fig. 1�. Therefore the
probability Pg�s� is given by

Prob�min�c1,Mg−1
�1� � � s� � Prob�min�c2,Mg−1

�2� � � s� ,

where Mg−1
�1� ,Mg−1

�2� are the maximal flows in the correspond-
ing daughter trees �whose roots are vertices from generation
one�. The daughter trees are statistically independent and
hence Mg−1

�1� ,Mg−1
�2� have the same distribution. Since

Prob�min�c,Mg−1� � s� = F�s��1 − Pg−1�s�� ,

we arrive at a recurrence

Pg�s� = �1 − F�s� + F�s�Pg−1�s��2. �3�

This recurrence could have been derived in many other ways.
To have a smaller than s maximal flow in the tree, one needs,
independently in both subtrees, either the upmost capacity to
be smaller than s �term 1−F�s��, or if it is larger than s, one
needs the maximal flow in the daughter tree to be smaller
than s �term F�s�Pg−1�s��.

Iterating Eq. �3� one gets

P1 = �1 − F�2,

P2 = �1 − F + F�1 − F�2�2,

P3 = �1 − F + F�1 − F + F�1 − F�2�2�2,

etc. The expressions Pg�s� become unwieldy but quickly ap-
proach a limiting distribution P��s�=limg→�Pg�s� which has
a remarkably simple form

P�s� = �	1 − F�s�
F�s� 
2

for 1/2 � F�s� � 1,

1 for 0 � F�s� � 1/2.

�4�

�Hereinafter we will omit the g=� subscript.� The
corresponding density function is

p�s� = �2f�s��1 − F�s��
�F�s��3 for F�s� � 1/2,

0 for F�s� � 1/2.

�5�

The most intriguing feature of this density function is the
sharp cutoff at s*, which is given by F�s*�=1/2. Note that
the position of the cutoff s* does not depend on the details of
the capacity distribution, only on the location does it take the
value 1/2. In other words, the specific values of the large
capacities �s with F�s��1/2� do not matter for large trees.
For instance, if the capacity distribution is bimodal, f�s�
= �1−a���s�+a��b−s�, then when a�1/2 the maximal cur-
rent is zero independent of b while for a�1/2 the maximal
current is b. This is essentially a branching process, where

the process survives if the branching parameter is larger than
1/2.

We now illustrate the behavior of the limiting distribution
in two representative cases. As an example of a bounded
capacity distribution, we choose the flat distribution with
density f�s�=1 if 0�s�1 and f�s�=0 when s�1. Then

p�s� = � 2s

�1 − s�3 for s � 1/2,

0 for s � 1/2.

�6�

The sharp cutoff in the limiting distribution, and also the
relatively slow convergence of the finite generation curves
can be observed on Fig. 2. From �6� one can compute any
moment of the maximal flow. For instance, the average
maximal flux is �s�=
dssp�s�=2 ln 2−1.

As an example of an unbounded capacity distribution we
take the exponential distribution, f�s�=e−s. Then

p�s� = �2es�es − 1� for s � ln 2,

0 for s � ln 2
�7�

and the average maximal flux is �s�=1/2.

B. Total flux

Consider the total flux �more precisely the maximal pos-
sible total flux� from the root to the leaves. For the binary
tree with one generation, the total flux from the root to the
two leaves is 	1=c1+c2. Similarly, for the binary tree with
two generations

	2 = min�c1,c11 + c12� + min�c2,c21 + c22� .

Generally the total flux from the root to the bottom of the
binary tree is found from

	g = min�c1,	g−1
�1� � + min�c2,	g−1

�2� � , �8�

where 	g−1
�1� ,	g−1

�2� are the total fluxes in the corresponding
daughter trees �whose roots are vertices from generation
one�.

FIG. 2. �Color online� Density p�s� of the maximal flow though
a binary tree of g generations. The capacities were drawn indepen-
dently from a flat distribution. Simulation results and analytic solu-
tion is depicted for finite g values. The g→� asymptotic limit is
also shown.
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Let Rg�q�=Prob�	g�q� and 
g�q�=−Rg��q� be the
corresponding density function of the total flux. As the
daughter trees are statistically independent, Eq. �8� implies
that


g�q� = �
0

q

dxhg�x�hg�q − x� , �9�

where hg is the probability density of the total flux of a half
tree

hg�q� = − Hg��q�, Hg�q� = Prob�min�c,	g−1� � q� .

Since the minimum of two numbers are larger then q if and
only if both numbers are larger than q, we have

Hg�q� = F�q�Rg−1�q� . �10�

Setting R0�q��0, Eqs. �9�, �10� provide a recursive formula
for 
g�q� for any finite g. In the g→� limit we arrive at


�q� = �
0

q

dxh�x�h�q − x� , �11a�

H�q� = F�q�R�q� . �11b�

Equation �11a� shows that 
�q� is a convolution. This sug-
gests to employ the Laplace transform, which we denote by a

hat F̂���=
0
�dqe−�qF�q�. We can recast Eq. �11a� into


̂��� = �ĥ����2 = �1 − �Ĥ����2 �12�

and hence, with Eq. �11b�, we have a closed equation for the
Laplace transform of the flux density.

First, let us discuss the properties of 
�q� for a general
capacity density f�q�. Obviously, 
�q� has a finite support if
and only if f�q� has a finite support. From Eqs. �11a� and
�11b� we find linear small q behavior 
�q�→qf2�0� in the
generic case f�0��0. In Appendix A we obtain the complete
small q series of 
�q�.

We now again consider two representative examples. For
the exponential distribution of capacities, Eq. �12� becomes


̂��� = 	1 + �
̂�� + 1�
1 + �


2

. �13�

By iteration, one arrives at a formal solution


̂ = � 1

1 + �
+

�

1 + �
	 1

2 + �
+

1 + �

2 + �
� 1

3 + �
+ . . . �2
2�2

.

It seems hard to recast the Laplace transform into a more
compact form, and to invert the Laplace transform. One can
extract, however, the asymptotics of the flux density already
from Eq. �13�. The small q behavior of 
�q� is encoded in the
large � behavior of the Laplace transform. Using Eq. �13�
one derives the large � expansion of the Laplace transform


̂��� = �−2 − 4�−4 + 2�−5 + 30�−6 + ¯

from which


 = q −
2

3
q3 +

1

12
q4 +

1

4
q5 + ¯ as q → 0. �14�

This series can be also obtained from the general formula
given in Appendix A.

If the large q behavior of 
�q� were exponential, it would
be encoded in the poles of its Laplace transform. We now
show that the Laplace transform 
̂��� is an entire function,
i.e., it has no poles or other singularities in the complex �
plane. An apparent pole at �=−1 is not a pole—using the
expansion


̂��� = 1 − ��q� + O��2� �15�

one finds that 
̂�−1�= �1+ �q��2. Similarly one computes

̂�−2�= �1+4�q�+2�q2��2 and 
̂�N� for other negative inte-
gers N and finds that all the apparent poles are regular points.
The lack of poles means that 
�x� decays faster than expo-
nentially.

To establish the decay law we use Eq. �13� to find


̂��� � exp�v2−�� �16�

for large negative � from which


�q� � exp�−
q ln q

ln 2
− q

1 + ln v
ln 2

� �17�

as q→�. Thus 
�x� decays faster than exponentially. The
leading factorial asymptotic 
�e−q log2 q is independent on v,
while the exponential correction depends on v whose deter-
mination requires the analysis of the full equation �13�. The
asymptotic predictions �14� and �17� are in good agreement
with simulation results �Fig. 3�.

For the flat capacity distribution, Eq. �11b� gives

h�q� = �1 − q�
�q� + �
q

2

dy
�y� for q � 1 �18�

and h�q�=0 for q�1. Equation �11a� shows that 
�q� van-
ishes outside the interval 0�q�2, while inside the interval

FIG. 3. �Color online� Simulation results for the density 
�q� of
the total flux though a binary tree of g generations. The capacities
were drawn independently from an exponential distribution.
The solid line represents the small q asymptotic solution given in
Appendix A.
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we utilize the fact that h�q�=0 when q�1 and rewrite Eq.
�11a� as


�q� = ��0

q

dxh�x�h�q − x� for 0 � q � 1,

�
q−1

1

dxh�x�h�q − x� for 1 � q � 2.

�19�

The small q expansion of the flux density is found from Eqs.
�18�, �19� to yield


�q� = q + q2 −
1

6
q3 −

5

6
q4 + ¯ �20�

in agreement with the general formula given in Appendix A.
Similarly by expanding Eqs. �18�, �19� near the upper cutoff
we find that the flux density vanishes linearly according to


�q� → �2 − q�
2, 
 � �
1

2

dx
�x� . �21�

The normalization requirement 
0
2dx
�x�=1 shows that 


�1, but to compute 
 seems impossible without solving the
entire problem. Numerically 
�0.4 and the asymptotic pre-
dictions �20� and �21� are in good agreement with simulation
results �Fig. 4�. Interestingly, the total flux density converges
remarkably fast in g, as opposed to the slow convergence of
the maximal flow density shown on Fig. 2.

C. b-ary trees

The above framework can be extended to other kinds of
trees. For instance, for the b-ary tree �also known as a rooted
Cayley tree with coordination number b+1� each node �apart
from the root� has one incoming link and b outgoing links.
The analog of Eq. �3� reads

Pg�s� = �1 − F�s� + F�s�Pg−1�s��b. �22�

Therefore the stationary distribution P� P� satisfies
P= �1−F+FP�b. The trivial root of this equation gives the
limiting distribution for large s,

P�s� = 1 when F�s� � 1 − 1/b

while for F�s��1−1/b, the limiting distribution is given by
a nontrivial root. For instance, for ternary trees

P =
2F2 − 3F + �4F − 3F2

2F2

for F�s��2/3. In particular, for the ternary tree with a flat
distribution of capacities

P = �1

2
	� 1 + 3s

�1 − s�3 +
3s − 1

1 − s

 for s � 1/3,

1 for s � 1/3.
�

Further, the distribution of the total flux 	�	� in the
infinite rooted b-ary tree is invariant under the transforma-
tion

	 = min�c1,	� + ¯ + min�cb,	� . �23�

Therefore the flux density is a �generalized� convolution


�q� = �
0

q

¯ �
0

q

�
j=1

b

dxjh�xj���q − x1 − ¯ − xb� �24�

and the Laplace transform is 
̂���= �ĥ����b. As an example,
let us consider the exponential distribution. Then the Laplace
transform of the flux density becomes


̂��� = 	1 + �
̂�� + 1�
1 + �


b

. �25�

The small q expansion is


 =
qb−1

�b − 1�!
+ O�qb� �26�

while when q→� the flux density decays according to


�q� � e−q logb q. �27�

III. HIERARCHICAL LATTICES

Hierarchical lattices represent a simple generalization of
rooted trees. These lattices have loops but are still tractable
�see, e.g., Refs. �18–20��. They mimic finite dimensional
lattices.

A b-ary hierarchical lattice of g generations is composed
by two b-ary trees of g generations merged at the leaves. The
current enters the system at one root, and leaves it at the
other. In Fig. 5 we show the binary hierarchical lattices of
one and two generations.

Denoting again the flux distribution of a half of the lattice
by Hg we get

Hg�q� = �F�q��2Rg−1�q� . �28�

FIG. 4. �Color online� Simulation results for the density 
�q� of
the total flux though a binary tree of g generations. The capacities
were drawn independently from a flat distribution. The distribution
for the first generation is composed by two straight lines. The thick
line represents the small q asymptotic solution, valid for q�1 and
given in Appendix A.
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In contrast to Eq. �10� we have F2 since the capacities of two
edges attached to the daughter lattice with g−1 generations
should be smaller than q.

The total flux is given by a b-fold convolution analogous
to Eq. �24�, which again simplifies after performing the
Laplace transform


̂g��� = �ĥg����b = �1 − �Hg
ˆ ����b. �29�

A finite g distribution can be obtained by starting with
R0�q��0 and iterating the above equations.

The limiting flux distribution is determined by solving

H�q� = �F�q��2R�q� , �30a�


̂��� = �1 − �Ĥ����b. �30b�

In the generic case of f�0��0 we get


�q� =
�2f�0��b

�b − 1�!
qb−1 + O�qb� �31�

in the small q limit.
The large q behavior is less universal. Let us consider

again two representative cases exemplifying unbounded and
bounded capacity distributions. For the exponential capacity
distribution, Eqs. �30a�, �30b� give


̂��� = 	2 + �
̂�� + 2�
2 + �


b

. �32�

Using this expression we extract the asymptotic behaviors.
We find that the small q expansion agrees with the general
asymptotic �31� while when q→� the flux density decays
according to


�q� � e−2q logb q.

These predictions agree with simulation results �Fig. 6�.
For the flat capacity distribution we arrive �by differenti-

ating Eq. �30a�� at an integral equation

h�q� = �1 − q�2
�q� + 2�1 − q��
q

2

dy
�y� �33�

for q�1. Another relation between functions 
�q� and h�q�
is �in the case of the binary hierarchical lattice� given by Eq.
�19�.

To extract the behavior of 
�q� in the q→2 limit we write
q=2−� ,x=1−�y and rewrite Eq. �19� as


�q� = ��
0

1

dyh�1 − �y�h�1 − ��1 − y�� . �34�

From Eq. �33� we get

h�1 − �z� = 2�
z + O��2� , �35�

where again 
=
1
2dx
�x�. Plugging Eq. �35� into Eq. �34�

and computing the integral we find that 
�q� vanishes cubi-
cally near the upper cutoff


�q� =
2

3

2�2 − q�3 + O��2 − q�4� . �36�

Generally for the b-ary hierarchical lattice 
� �2−q�b+1 near
the upper cutoff.

IV. RANDOM RECURSIVE TREES

In the previous sections we have studied flows on regular
graphs where all node degrees �apart from the root node�
were the same. It is harder to deal with arbitrary random
graphs but at least one class of random trees, the so-called
random recursive trees, are tractable. First we overview the
general properties of these random trees, and then we shall
discuss flows on these trees.

A random recursive tree is generated as follows: One
starts with a root and adds nodes one by one so that each
newly-introduced node is linked to a randomly selected ex-
isting node. Random recursive trees which have been studied
in great detail �see, e.g., the survey �21� and more recent
articles �22–25��.

Let N be the total number of nodes and Dj�N� be the
number of nodes on distance j from the root. By definition,
D0�N��1, since the root is on distance 0 from itself. Quan-
tities Dj�N� with 1� j�N are random, and, e.g., the number
of nodes on distance one from the root evolves according to

FIG. 5. �Color online� Illustration of a flow on a binary hierar-
chical lattices of one and two generations. The width of the links
represents their capacity and the arrows stand for the amount of
current flowing in and out of the system.

FIG. 6. �Color online� Total flux density 
�q� for binary hierar-
chical lattice in the infinite size limit �g→ � �. The capacities were
drawn from a flat and from an exponential distribution. The curves
were obtained by iterating Eq. �28�, and recovered by the small q
asymptotic series given in Appendix A.
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D1�N + 1� = �D1�N� + 1 with probability N−1,

D1�N� with probability 1 − N−1.
�37�

Thus the average D1�N���D1�N�� satisfies

D1�N + 1� = D1�N� +
1

N

whose solution is D1�N�=�1�j�N−1j−1. Similarly using Eq.
�37� one establishes a simple recurrence for the variance
V1�N�= �D1

2�N��− �D1�N��2, viz.

V1�N + 1� = V1�N� +
1

N
−

1

N2

which is also solvable. Asymptotically

D1�N� = ln N + � + O� 1

N
� , �38a�

V1�N� = ln N + � −
�2

6
+ O� 1

N
� , �38b�

where �=0.5772¯ is Euler’s constant.
Thus fluctuations are asymptotically negligible �26� and

we can focus on the averages. One easily establishes the
exact recurrence for the averages

D j�N + 1� = D j�N� +
1

N
D j−1�N� . �39�

In the N→� limit, this recurrence reduces to a differential
equation

dD j

dN =N−1D j−1 whose solution reads

D j�N� =
�ln N� j

j!
. �40�

Thus the root is linked to approximately ln N nodes each
of which in turn is linked on average to 1

2 ln N nodes. What is
important is that each node in the first generation �on dis-
tance one from the root� is linked to many nodes in the
second generation; only a few nodes in the first generation
have a finite �not diverging with N� number of links to the
nodes of the second generation. This observation allows us to
compute the maximal flow in the leading order. Indeed, as-
ymptotically it is the maximal capacity among all D1�N�
capacities from the root to the first generation nodes.

The above argument shows that for the flat distribution of
capacities the density distribution for the maximal flow ap-
proaches a stationary limit p��s�=��s−1�. Essentially
the same behavior occurs for any bounded capacity distribu-
tion p��s�=��s−smax�. For unbounded capacity distributions,
the density distribution for the maximal flow does not ap-
proach a stationary limit. For instance, for the exponential
distribution we approximately have

pN�s� = ln Ne−s�1 − e−s�ln N �41�

implying that on average the maximal flow is

�s�N = ln N . �42�

The computation of the total flux is even simpler. For an
arbitrary capacity distribution, the total flux from root to
leaves is

	N = �c�ln N . �43�

Fluctuations around the average are theoretically negligible
in the N→� limit, but since they scale as �ln N, see Eq.
�38b�, fluctuations become negligible only for immensly
large N.

V. DISCUSSION

Trees represent the least interconnected graphs while
complete graphs are the most connected. Flows in complete
graphs exhibit simple asymptotic behavior. The maximal flux
from an arbitrarily chosen source node to an arbitrarily
chosen sink node scales as

�s�N = �c�N �44�

and fluctuations about this average are asymptotically negli-
gible. To show this we first notice that for a complete graph
with N+1 nodes, the flow from node 0 �source� to node N
�sink� cannot exceed �1�j�Nc0j which is asymptotically �c�N
�fluctuations are of the order of �N�. This is the upper bound
and from a particular node j it will be impossible to transmit
flow c0j directly to the sink if c0j �cjN. However, the node j
is connected to nodes 1 , . . . , j−1, j+1, . . . ,N−1 and in the
large N limit it will be possible to find the way to transfer the
flow via those side routs.

For regular lattices, the problem seems analytically intrac-
table. The simplest setup is a two-dimensional square lattice
with additional restriction that the flow is biased along the
diagonal. More precisely, the root is �0,0� and from every
site �i , j� with i , j�0 the flow is to �i+1, j� and �i , j+1�. The
capacities are again chosen independently from the same dis-
tribution. A similar problem of directed polymers on the
same lattice with random “energies” assigned to nodes has
been solved by Krug and Halpin-Healy �27�. The difficulty in
our case arises from the splitting of current at the nodes.

There are a number of other extensions of the present
work which are worth pursuing. Perhaps the most obvious is
to complex networks with heterogeneity both in the degrees
of the nodes and the capacities of the edges. The problem
seems too complicated for a rigorous treatment but a mean-
field approach might provide a very good approximation.
One would also like to understand whether the network with
random capacities exhibits “multifractal” aspects similar to
those found for random resistor networks �28,29�.

Finally, we mention a related problem: the minimal cost
flows on networks �2�. In these models there is a cost asso-
ciated with each edge and the cost of a flow is the sum of the
costs of the edges it flows through. This problem with ran-
dom costs drawn from a common distribution �9,13� simpli-
fies in the strong disorder limit, where the cost of a flow is
dominated by its single most expensive edge. In this limit,
the search for the cheapest flow becomes equivalent to our
present study on trees: the search for the maximal flow.
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APPENDIX A: SMALL q SERIES OF �„q…

Assume that we can write f�q� and 
�q� as a series around
q=0

f�q� = �
i=0

�
f �i��0�

i!
qi, 
�q� = �

j=0

�

�j��0�

j!
qj , �A1�

where superscript�i� denotes the ith derivative of a function.
The integrated probabilities then can be written as

F�q� = − �
i=0

�
f �i−1��0�

i!
qi, R�q� = − �

j=0

�

�j−1��0�

j!
qj ,

where formally we denote f �−1��0��
�−1��0��−1. Then from
Eq. �11b� we have

H�q� = �
n=0

�

qn�
i=0

n
f �i−1��0�
�n−i−1��0�

i ! �n − i�!

from which we obtain

− h�n��0� = �n + 1� ! �
i=0

n+1
f �i−1��0�
�n−i��0�
i ! �n + 1 − i�!

. �A2�

On the other hand, from Eq. �11a�


�k��0� = �
j=1

k

h�j−1��0�h�k−j��0� . �A3�

Hence, with Eqs. �A2� and �A3�, we explicitly expressed

�j��0� with lower derivatives of 
, which recursion can be
easily implemented on a computer. The limiting distribution
is compared to simulation results in Figs. 3 and 4 �for the flat
capacity distribution the result is valid only for q�1, as the
radius of convergence is one for the flat distribution itself�. It
is also straightforward to obtain the leading terms of the
asymptotic series by hand


�q� = qf2�0� + q2f�0��f2�0� + f��0�� + O�q3� .

For binary hierarchical lattices the calculation is similar.
Equation �A3� is still valid, while one should replace Eq.
�A2� by

− h�n��0� = �n + 1� ! �
i,j,l�0

f �i−1��0�f �j−1��0�
�l−1��0�
i ! j ! l!

,

where i+ j+ l=n+1 is required in the sum. The above calcu-
lations can be straightforwardly extended to b-ary trees and
b-ary hierarchical lattices.
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